Smallpox gone

Measles within the next 10-15 years

The eradication of measles infection will increase child mortality in Africa

Peter Aaby Christine S Benn Bandim

Fra CDC public health images

The eradication scenario

- The ultimate dream in Public health: eradication
- Measles targetted within next 10-15 years
- Polio targetted within next 5-10 years
- Rubella may be targetted with measles
- To quote Gates: Smallpox gone; Polio 99% down; Measles deaths 98% down => Vaccines best buy in Global Health
- Removing/reducing vaccinations and reduced outbreak control makes eradication efforts cost-effective
- This is clearly beneficial: Saving lives and money in the current paradigm where the only effect of vaccinations is to prevent against specific diseases
- What will happen if vaccines have other effects?

Measles eradication

- The immediate consequences:
- WHO recommendations: The age of measles vaccination (MV) will be increased from 9 to 12 months – as in Latin America in 1996 when measles was eliminated.
- 2. It will become increasingly difficult to maintain funding for MV activities
- 3. The supplementary immunisation activities (SIA) campaigns will be removed to save money
- 4. DTP/Penta/PCV is likely to be the last vaccinations to profile the immune system

Before-after measles vaccination (MV): Annual mortality rates in African community studies

Bissau: MV at 6 mo introduced 1979 - 3-fold reduction Measles infection may have caused 10-20% of deaths! => A beneficial effect unrelated to measles prevention₄

Reduction in mortality associated with MV and the % deaths due to measles infection in unvaccinated children

Not explained by prevention of acute (or delayed) measles infection! Could it be selection bias?

Randomised/blind studies: Measles vaccinated vs unvaccinated children

Design	Control group	Mortality (deaths/children)		Mortality ratio
		Measles Vaccinated	Not measles vaccinated	(MV+/MV-)
Nigeria: Random, not blind – 18 month follow-up	DTP	0%(0/26)	12%(3/27)	0.00 (0.0-2.5)
Sudan: Random, not blind – 5-9 months	Meningo- coccal A+C	0.3%(1/340)	3.5%(6/170)	0.09 (0.0-0.7)
Bissau: Blind, not random 2-years follow-up	Ineffective measles vaccine	5%(6/124)	13%(7/53)	0.32 (0.1-0.9)
Bissau: Random, not blind – 3 months during war	Inactivated polio (IPV)	2%(4/211)	5%(11/222)	0.30 (0.1-0.9)

High-titre measles vaccine (HTMV), Bissau, 1986-90

Similar results in Senegal, Sudan and Haiti – HTMV withdrawn 1992 No explanation –but repeatable. How can an effective vaccine do this?

Introduction of DTP: Rural areas of Guinea-Bissau 1984-87

Diphtheria-Tetanus-Pertussis (DTP) effect strongest for girls

Accumulated mortality curves for DTP-vaccinated vs no DTP at 2 months

DTP/noDTP	MRR crude	MRR adjusted
Girls	2.5 (0.9-6.5)	5.7 (2.1-16)
Boys	0.5 (0.2-1.2)	1.3 (0.5-3.1)
All		2.6 (1.4-5.1)

HTMV and DTP?

F/M ratio: 0.96 (0.7-1.3)

F/M ratio: 1.93(1.3-2.8)

Not RCT – but this "proves" a causal biological process

HTMV withdrawn for the wrong reason

Annual mortality in MV trials depending on DTP status at enrolment

Study	Girls			Boys		
	No DTP3	DTP3 < MV	MR	No DTP3	DTP3 < MV	MR
2-dose Bissau	7.5%	3.8%	1.97(1.0-3.7)	6.4%	6.0%	1.06(0.6-1.9)
Sudan	6.0%	2.8%	2.16(0.3-17.3)	1.4%	1.9%	0.71(0.1-7.9)
Congo	10.0%	2.8%	3.06(0.6-16.1)	10.6%	5.1%	2.06(0.5-9.22)
Total			2.10(1.2-3.7)			1.13(0.7-1.9)

DTP after measles vaccine associated with 2 fold higher mortality

What can be done to reduce the negative effect of DTP?

Increased female mortality in the age groups of DTP => Change the immunological profile with a live vaccine => RCT: Early Measles Vaccine at 4½ m

Testing non-specific effects of MV

- **Recruitment 2003-2007 Follow-up to 2009**
- 6,600 randomised to A) Edmonston-Zagreb (EZ) at 4¹/₂+9 mo, or B+C) no vaccine at 4¹/₂ mo and EZ MV or Schwarz MV at 9 mo
- DTP3 four weeks before enrolment to prevent the problem of DTP after MV
- Study designed to test a 25% difference in mortality

RCT of two doses of Measles Vaccine

Two-dose standard MV at 4¹/₂ and 9 mo was fully protective and reduced mortality with 50% - with 45% if measles was excluded

RCTs of two doses of measles vaccine vs standard policy of one dose at 9 month

Study	Follow-up period	Mortality rate ratio
Sudan, 1989-92 Vaccine 2007	5-36 mo	0.60 (0.3-1.4)
Bissau, 1993-95 IJE 2003	6-18 mo	0.66 (0.2-2.3)
Bissau, 2003-09 BMJ2010	4 ¹ /2-36 mo	0.50 (0.3-0.8)
Combined		0.53 (0.36-0.77)
Observational study campaigns BMJ 1993	9-60 mo 4-8 vs 9-11 mo	0.41 (0.2-0.9)

Measles eradication I: age of MV from 9 to 12 months and DTP becomes the last vaccination

Instead of moving the age foreward as done in Bissau it will be moved backwards => increased mortality, particularly for girls

Measles eradication II: Campaigns will be removed

Under-5 mortality in Bandim 1978-2007

Polio eradication

- The immediate consequences:
- 1. Change from OPV to IPV for fear of OPV related polio cases and revision of OPV strains
- 2. Removal of OPV

Evidence:

- OPV may have beneficial effects in natural experiments: The hospital case fatality was 3-fold lower when DTP was absent and only OPV given Mortality lower among those who received OPV in campaign
- 2. OPV beneficial effects in RCT (interim results)
- 3. IPV associated with 52% (2-128%) higher female than male mortality in RCT ¹⁸

Smallpox and vaccinia eradication

- The first example of eradication of a disease (1977) and removal of a vaccine (1980)
- Due to the fear of what could happen when \bigcirc measles was eradicated we started in 1998 to examine what happened after the removal vaccinia 1. In Bissau: we made scar surveys and followed for mortality 2. In Copenhagen: We used school health cards which had vaccination information and could link to Danish health registers

Live vaccines are good – what happens when removed? Vaccinia after smallpox eradication in Guinea–Bissau

Mortality rate ratio for Scar/no scar: Study I (1998-2002) 0.60 (0.4-0.9); F 0.51(0.3-0.8); M 0.72(0.4-1.2) Study II (2003-5) 0.22 (0.1-0.6): F 0.19(0.1-0.6); M 0.40(0.0-3.7)

Protection against HIV for scar/no scar: Female: 46% (0-71%)

Live vaccines are good – what happens when removed? Vaccinia after smallpox eradication in Denmark

Smallpox and BCG phased out between 1965-1976 in Denmark

We used Copenhagen school health cards with information on vaccinations to link with Danish health registers

BCG

BCG reduced lymphomas with 51%(7-74%) Vaccine 2009

Smallpox vaccine

Asthma reduced with 45% (0-70%) - **J Allergy Clin Imm 2003** Hospitalisation for inf diseases reduced with 16% (2-28%) **IJE 2011**

BCG and smallpox vaccine

Reduced the risk of hospitalization for HIV-infection by 65% (12-86%)

The eradication of measles will lead to DTP being the last vaccination in childhood

* Significant difference between DTP and BCG or between DTP and MV

MV at 4+9mo vs No vac(DTP3)+MV at 9mo

Having DTP as last vaccination

The only RCT suggests 3-fold higher mortality in infancy for DTP => Globally this would mean 100,000s of children every year

The eradication scenario: What can be done?

- Global health's eradication strategy is contradicted by all data
- INDEPTH sites are in best situation to resolve these contradictions: are there or are there not non-specific beneficial effects of vaccines
- Polio OPV
 - Test IPV vs OPV in RCT
 - Document effect of OPV campaigns -
 - Maybe have a phased implementation of a trial
 - Gradual phasing out of OPV
- Measles vaccine
 - Test 12 mo vs 9 mo in RCT
 - Document effect of MV campaigns (SIA) of children aged 9-60 months
 - Maybe phased implementation
 - Comparison of effects above and below 9 months
 - Gradual change in age of vaccination or phasing out
- Smallpox vaccine
 - More surveys

High-titre measles vaccine: 2-fold higher female mortality

Lessons from high-titre measles vaccine (HTMV) trials:

- EZ HTMV was fully protective against measles => negative non-specific effect
- Sex-differential effect
- Public health effects: 35% excess mortality from 4 to 60 months => at least ½ mill annual deaths in Africa

WHO introduced HTMV 1989 and withdrew it in 1992 =>

Interpretation: Too much of a good thing => Major donors: Money for new vaccines!

=> We looked for important NSEs of other vaccines

MV at 4+9mo vs No vac(DTP3)+MV at 9mo by Vitamin A-at-birth status

Vitamin A may have a fundamental impact on the NSEs => Only those who did not receive VAS-at-birth

Non-specific effects (NSE) of standard MV at 41/2 and 9 months of age:

General reduction in childhood mortality

- Vaccines stimulate the immune system affecting susceptibility
- The NSE are often more important than specific effects
- Vaccination programmes should take the NSE into consideration: age at vaccination, number of vaccinations, sequence of vaccinations
- Reconsider assumptions
 - •Focus: specific diseases or immune deviations
 - •Effects may differ for boys and girls
 - Interventions interact
- INDEPTH in a unique position to pursue these problems
- => EU is (hopefully) going to fund a multicentre trial of early MV

Impact of preventing measles infection: Reduction in mortality with or without measles cases in the survival analysis

