Trends in Sex Differential Childhood Mortality in Ballabgarh HDSS (1992-2009)

Anand Krishnan, Dwivedi Purva, Yadav Kapil, Nawi Ng, Peter Byass

Ballabgarh HDSS Centre for Community Medicine The All India Institute of Medical Sciences New Delhi – 110029, India

Reduce child mortality

TARGET

Reduce by two thirds, between 1990 and 2015, the under-five mortality rate

Child deaths are falling, but not quickly enough to reach the target

Under-five mortality rate per 1,000 live births, 1990 and 2008

Goal 3: Promote gender equality and empower women

NNMR & IMR in Ballabgarh HDSS

NDE/Figure 1 Infant and neonatal mortality rates in Ballabgarh (1972–1997).

Lower than rest of rural north India
Gender Differential not studied

Why focus on Gender

- Child mortality rates stagnant for the last decade – Is it related to gender differentials
- Declining sex ratio at birth came to the fore in mid nineties and early 2000.

C.R.H.S. Project, Ballabgarh

Rural Intensive Field Practice Area – 87002 in December 2009

Methods – Data collection

- Birth and death data collected during monthly visits by health worker – service provision like immunization, antenatal care etc.
- Annual Census in December every year to identify additional births and deaths.

Data Storage

- Electronic Database:
- Started since 1988: fully functional since 1992.
- Mainly started for service provision and not for demographic surveillance
 - In migration data not captured and stored
 - Deaths archived
- Since joining INDEPTH in 2003 have been looking at ways to meet both the ends
 - INDEPTH Fellows were very useful

Data Management

- Problem: Inability to differentiate between native born (and eligible for denominator) and migrated (ineligible) for child mortality rates.
- Would result in a bias of decreasing mortality rates over time.
- During Census 2009 all houses visited and in migration year collected for those still living and database corrected.
 - Low in migration rates mainly due to marriage
 - Unlikely to be a sex differential

Data Analysis

Three year moving averages used

- Small denominators : around 1900 live births
- Fluctuating mortality rates
- As census is done and all events are enumerated – confidence intervals not reported.

Current child mortality rates (2007-2009) (95% C.I.)

		M	F	Т
	NNMR	25.1	23.8	24.5
	PNMR	19.0	28.9	23.6
	IMR	44.1	52.7	48.1
IN DEP	1-4 MR	11.6	20.8	15.9
HLAJONI .	HIDMAN	1	1	

Total Death Rates (1992-2009)

Neonatal Mortality Rate

Post Neonatal Mortality rate

Infant Mortality Rate

1-4 yrs Death Rate

Under Five Mortality Rate

Infant Mortality Rate 1993-2008

Was it always like this?

	Year	NNMR	IMR	1-4 MR	
	1966-69			NR	
	Μ	43.7	91.6		
	F	41.4	123.6		
	1972-74	NR			
	Μ		42.5	31.0	
	F		57.5	69.0	
	1982-84	NR			
INDE	Ŵ		43.7	32.1	रतीय आयुत्तिज्ञ
HF	. IN		56.4	62.9	
a HONI					STITUTE OF WEINTA

From published sources

What about other parts of India?

Fig 1. - Framework for explaining Gender differences in child survival

Key Messages

- Girl Children have higher mortality rates at all levels and even at neonatal period in Ballabgarh HDSS population.
- With low sex ratio at birth this appears a continuum.
- MDG goals unlikely to be reached unless gender differential is addressed.
- Major socio-cultural issues involved which need to be understood better and

What needs to be done

At Site Level

- Address neonatal mortality being done in collaboration with Unicef India
- Understand issue better Part of PhD work with Umea
- Social Mobilization for Gender discrimination being done

INDEPTH Level

- Part of Equity working group
- Report all data by sex as a rule

National / Global Level

- Advocacy for gender

