

Swiss Tropical and Public Health Institute Schweizerisches Tropen- und Public Health-Institut Institut Tropical et de Santé Publique Suisse

Associated Institute of the University of Basel

Spatial-temporal distribution of entomological inoculation rates in Manhica DSS, Mozambique

Kasasa Simon

Swiss TPH

Outline

- Introduction
- Objectives
- Methodology
- Modelling
- Results
- Discussion
- Acknowledgement

Introduction

- Malaria is still a primary cause of both morbidity and mortality in Mozambique especially among the children and pregnant women
- Almost 100% of the population lives in a high transmission zones and are at risk of infection
- It is responsible for 60% of paediatric admissions and 23% of all in-hospital deaths
- The disease is predominantly caused by plasmodium falciparium, transmission is perennial with a seasonal peak in the rainy season (November-April)

Introduction cont..

- Since 1940s, the country has been applying WHO recommended tools (IRS,ITN and provision of treatment using ACT)
- According 2009 WHO report, the country has registered a decline in overall malaria case except for children
- The relationship between malaria mortality and levels of transmission is still unclear
- EIR, one of the recommended indices for measuring transimission levels in areas of high intensity
- In 2002, INDEPTH initiated the MTIMBA project with the aim of assembling a database that can be used to address malaria transmission and mortality relationship

Objectives

General Objective: develop statistical methods for analysing large DSS data in order to examine the relationship between mortality and malaria transmission

Specific objectives:-

- **to** identify environmental predictors for EIR
- to establish the relationship between EIR and various predictors
- to produce spatially explicit and season specific estimates of EIR

Methodology

Study site:

- Maniac DSS is located in southern Mozambique (at 25°24'S and 32°48'E)
- It has the natural catchment population of the District hospital
- DSS is situated in fertile lower lands and an escarpment of moderate height
- The area has two distinct seasons , warm (Nov and April) and a cool
- **DSS data:** it is collected at very large number of households repeatedly over time, and thus they are correlated in space (*spatial*) and time (*temporal*).
- Common exposures (climatic), may influence mortality similarly in households of the same geographical area, introducing spatial correlation in mortality and malaria transmission

Entomological data

- Entomological data were collected from randomly selected compounds using both LTC and HBC
- LTC were performed overnight/over 2 consecutive nights
- HBC were carried out monthly for calibration purposes against LTC
- Mosquito catches were performed between 6.00pm to 6.00am
- LTC anopheles mosquitoes were tested for plasmodium falciparium using ELISA

Environmental data

Predictor	Spatial Resolution	Temporal Resolution	Source
Day land surface temperature (Day LST)	1 km²	8 days	MODIS
Night land surface temperature (Night LST)	1 km²	8 days	MODIS
Normalized difference vegetation index (NDVI)	250 m²	16 days	MODIS
Enhanced Vegetation Index (EVI)	250 m²	16 days	MODIS
Rainfall estimate (RFE)	8 km²	Dekadal	ADDS
Elevation/Altitude	1 km²	-	USGS
Nearest distance to water bodies (rivers and wetlands)	-	-	Manhica DSS

Spatio-temporal distribution

Temporal distribution

Spatial distribution

Spatio-temporal models

- Classical regression models assume independence of events which is not the case all the time
- Spatio-temporal data are correlated in space and time
- Ignoring correlation leads to under estimation of the standard error and overestimation of covariates' significance
- Spatial models incorporate spatial correlation
- Spatial models can be used to predict outcomes at new locations

Model fit

Logistic regression model

$$Y_{it} \sim Bn \ N_{it}, P_{it}$$
 Where N_{it} number of tested mosquitoes
 P_{it} sporozoite rate

 $\log it(P_{it}) = X_{it}^{T}\beta + f(t)$

Where

$$f(t) = \varphi_1 \cos\left(\frac{2\pi t}{T}\right) + \varphi_2 \sin\left(\frac{2\pi t}{T}\right)$$
, the seasonality function

β Regression parameters

Spatio-temporal Logistic regression model $\log it(P_{it}) = X_{it}^{T}\beta + f(t) + \phi_i + \epsilon_t$

Where $\phi_1, \ldots, \phi_{n-1}, \phi_n \sim MVN(0, \Sigma)$

$$\Sigma_{ij} = \sigma^2 \exp -\rho d_{ij} \quad \text{and} \quad \rho > 0$$

- σ^2 Spatial variance
 - d_{ij} distance between locations i and j
 - ρ the correlation parameter

$$\in_t \sim AR(1)$$

Model fit (2)

Negative Binomial model for count data

 $Y_{it} \sim NB \ p, r$ Where r dispersion parameter

P Probability of success

$$P = \frac{r}{r + \mu}$$

 $\log(\mu_{it}) = X_{it}^{T}\beta + f(t)$

Where

 $f(t) = \varphi_1 \cos\left(\frac{2\pi t}{T}\right) + \varphi_2 \sin\left(\frac{2\pi t}{T}\right)$, the seasonality function

$$eta$$
 Regression parameters

Spatio-temporal negative binomial

$$\log(\mu_{it}) = X_{it}^{T}\beta + f(t) + \phi_i + \epsilon_t$$

Where
$$\phi_1, \ldots, \phi_{n-1}, \phi_n \sim MVN(0, \Sigma)$$

$$\Sigma_{ij} = \sigma^2 \exp -\rho d_{ij} \quad \text{and} \quad \rho > 0$$

 σ^2 Spatial variance

 d_{ij} distance between locations i and j

 ρ the correlation parameter

$$\in_t \sim AR(1)$$
 (temporal term)

Data Analysis

- Lag time analysis was used in order to account for elapsing time of environmental factors on SR and MBR
- Seasonality was accounted for using dry/wet binary variable or a mixture of trigonometric functions
- Bayesian method and Markov chain Monte Carlo simulation were used to estimate model parameters.
- Due to large number of locations, the spatial process was estimated using a subset
- Analysis was performed using Stata ver 10, OpenBUGS and R softwares

Results

- •Total number of An. funestus was 16078 (85%)
- •Total number of An. gambiea was 2845 (15%)
- •Overall sporozoite rate for AF was 1.4% and 1.1% (AG)

Observed sporozoite rates

Predicted SR using ZIB model (AG)

Prediction errors for SR using ZIB model

Predicted mosquito density using ZINB (AG)

Prediction errors for Density using ZIB model

Discussion

- Accurate maps are essential tools needed in establishing the effectiveness of malaria control innervations
- Malaria transmission in sub-Saharan Africa is heterogeneous and environmentally driven. Application of spatio-temporal models is a necessary measure for developing early warning sign for a particular country.
- Entomological data is very sparse making statistical analysis complicated

Acknowledgement

Swiss Tropical Institute

PD Dr. Penelope Vounatsou

Prof. Dr. Thomas Smith

MTIMBA Site Pls

- 1. Dr. Salim Abdulla
- 2. Dr. Kayla Laserson
- 3. Dr. Ariel Nhacolo
- 4. Dr. Seth Owusu-Agyei
- 5. Dr. Diadier Diallo

Financial Institutions

- •Swiss National Foundation
- •MIM/TDR, RBM and WHO-AFRO
- •Other funding agencies for the network & sites

THANK YOU !!!!

