

Co-Pl Osman Sankoh

AWI-Gen Wits-INDEPTH Partnership

Genomic and environmental risk factors for cardiometabolic disease in Africans

Project Manager: Collaborative Centre

Ntombizodwa Mthembu

National Institutes of Health - Wellcome Trust H3Africa Research Network

Change in obesity (1980 to 2008)

Stevens et al. Population Health Metrics 2012, 10:22 http://www.pophealthmetrics.com/content/10/1/22

Top 5 leading **risk factors** for burden of disease (DALYs) in **South Africa**

AWI-Gen Collaborative Center overview

AWI-Gen study sites in Africa:

Ghana, Navrongo (Rural) **Abraham Oduro**

Kenya, Nairobi (Urban) **Catherine Kyobutungi**

South Africa, Soweto (Urban) **Shane Norris**

South Africa, Agincourt (Rural)

Stephen Tollman

South Africa, Dikgale (Rural) **Marianne Alberts**

Top 5 leading **risk factors** for burden of disease (DALYs) in **South Africa**

Nutritional deficiencies

HIV/AIDS & tuberculosis

Diarrhea/LRI/other infectious

Project – Aims

- 1. Pilot Project Soweto (~2000 individuals)
- 2. Population structure and genome architecture
- 3. Genomic and environmental contributions to body composition across six Centres in Africa (~12 000 individuals)

Aim 1: Pilot Project

Urban Soweto study

- Study design
 - Population sample
 - Age 40 to 60 yrs
 - Male & Female
 - Body composition phenotype
- Genomic platform
 - Metabochip
 - Candidate gene/region fine mapping
- Analysis
 - Correlations with quantitative traits related to body composition and cardiometabolic risk

Progress

- ~1000 females
- Phenotyped
- Genotyped

Next steps

- Preparing DNA from next 1000 individuals for genotyping
- Bioinformatics training
- Data analysis

The Metabochip, a Custom Genotyping Array for Genetic Studies of Metabolic, Cardiovascular, and **Anthropometric Traits**

August 2012 | Volume 8 | Issue 8 | e1002793

Benjamin F. Voight^{1,2,9}, Hyun Min Kang^{3,9}, Jun Ding⁴, Cameron D. Palmer^{1,5}, Carlo Sidore^{3,6,7}, Peter S. Chines⁸, Noël P. Burtt¹, Christian Fuchsberger³, Yanming Li³, Jeanette Erdmann⁹, Timothy M. Frayling¹⁰, Iris M. Heid^{11,12}, Anne U. Jackson³, Toby Johnson¹³, Tuomas O. Kilpeläinen¹⁴, Cecilia M. Lindgren¹⁵, Andrew P. Morris¹⁵, Inga Prokopenko^{15,16}, Joshua C. Randall¹⁵, Richa Saxena^{1,17,18}, Nicole Soranzo¹⁹, Elizabeth K. Speliotes^{1,20}, Tanya M. Teslovich³, Eleanor Wheeler¹⁹, Jared Maguire¹, Melissa Parkin¹, Simon Potter¹⁹, N. William Rayner^{15,16,19}, Neil Robertson^{15,16}, Kathleen Stirrups¹⁹, Wendy Winckler¹, Serena Sanna⁶, Antonella Mulas⁶, Ramaiah Nagaraja⁴, Francesco Cucca^{6,7}, Inês Barroso^{19,21}, Panos Deloukas¹⁹, Ruth J. F. Loos¹⁴, Sekar Kathiresan^{1,17,22,23}, Patricia B. Munroe¹³, Christopher Newton-Cheh 1,17,22,23, Arne Pfeufer 24,25,26, Nilesh J. Samani 27,28, Heribert Schunkert 9, Joel N. Hirschhorn^{1,5,29}, David Altshuler^{1,17,23,29,30,31}*, Mark I. McCarthy^{15,16,32}*, Goncalo R. Abecasis³*, Michael Boehnke3*

Advantages:

- Cost effective & Rapid results
- Fine mapping (previous associations)
- Replication study
- Data provide a great training opportunity

Disadvantages:

- SNP choice largely Eurocentric
- Previous associations not in African populations
- SNP choices now outdated (designed in 2009)
- Limits novel discovery

Aim 2: Population structure and genomic architecture

- AWI-Gen Study design
 - 30 unrelated trios
 - 40 unrelated individuals
- Genotyping Platform
 - Uncertain (Genome sequencing?)
- Outcome
 - HapMap equivalent for each population
 - Common variant allele frequencies
- Challenge
 - Which populations to test

African populations

PCA $- \sim 460~000$ SNP markers May et al. (2013) BMC Genomics

Complexity of population structure

Africa

2 146 languages spoken (30.2% of all living languages) 789 138 977 people (12.7% of all people)

Country	No. Living languages	Indigenous languages	Immigrant languages	Population size	Diversity Index
Burkina Faso	70	68	2	10.9 M	0.768
Ghana	86	81	5	25.1M	0.835
Kenya	72	67	5	37.6M	0.928
South Africa	44	28	16	44.6M	0.874

Ethnologue may be cited as: Lewis, M. Paul, Gary F. Simons, and Charles D. Fennig (eds.). 2013. Ethnologue: Languages of the World, Seventeenth edition. Dallas, Texas: SIL International. Online version: http://www.ethnologue.com.

Aim 3: Genetic and environmental contributions to body composition

- Ethics approval (Community engagement)
- Standardised phenotype questionnaire
- SOPs
- Central measurement equipment purchase & training
- Training in genomic science
- Staggered field roll out (QA)

Blood samples (fasting):

EDTA (DNA)
Clotted (serum - lipids)
NaF (plasma - glucose)

Added sampling:

Spot urine collections

Body composition and HIV infection

In a population sample of 2000 individuals.....

	Agincourt	Dikgale	Nairobi	Nanoro	Navrongo	Soweto	
Expected number HIV infected individuals	462 ★	274 *	248 *	22 *	30 ★	304 ★	
			★ Base	d on region	al averages		
			** Based on country average				

Data Collection: RedCAP for AWI-Gen

Individual Demographic Sample Phenotypic Checklist (11) measurements Collection (21) Data (89) Data (231) (25)Education Questionnaire **Anthropometric** General **Employment Blood** collection Information measurements Anthropometric measurements Household attributes* BP, pulse and Substance use ultrasound measures Demographic information General health Blood pressure **Blood Samples** Age **HIV** testing Infection history Country · Home language* HIV test Cardiometabolic risk Ethnicitv* Family Ethnicity Pulse Thyroid disease Urine sample Kidney disease Travel reimbursement Family Urine collection Physical activity Ultrasound Composition measurements **Quality Controller ID** Sleep

Phenotype Harmonisation with H3Africa Consortium

AWI-Gen Data Management Workshop July 2013

Data Management

Timeline (Aug 2012 – July 2017)

ACTIVITY	YEAR 1	YEAR 2	YEAR 3	YEAR 4	YEAR 5
Training and capacity development					
Aim 1: Obesity and body composition pilot study – urban South Africa					
Aim 2: African genome structure					
Aim 3: Phenotyping and sampling for Cohorts					
Aim 3: Genome association study – west, east and south Africa					

Outcomes

- Capacity development for genomic studies
 - PhD students, postdocs, scientists
 - Epidemiology, population genetics, genomics, bioinformatics
- Phenotype and blood profiles
 - Means and ranges for African populations
- New knowledge
 - Pilot study
 - Replication data
 - Logitudinal analysis
 - Training
 - African population diversity
 - African variation enhanced chip (cost effective)
 - African population structure
 - Main research question

Increased understanding of the role of genome variation and environmental factors in cardiometabolic risk across African populations

Acknowledgements

Wits

Scott Hazelhurst

Zane Lombard

Himla Soodyall

Kathleen Khan

Nadia Carstens

Ananyo Choudhury

Nigel Crowther

Alisha Wade

Shane Norris

Stephen Tollman

Cassandra Soo

Venesa Pillai

INDEPTH

Osman Sankoh

Kathleen Kahn

Stephen Tollman

Abraham Oduro

Godfred Agongo

Halidou Tinto

Hermann Sorgho

Marianne Alberts

Catherine Kyobutungi

Kate Theron

